Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Sci (Lond) ; 138(4): 137-151, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38299431

RESUMO

Hypercholesterolemia in pregnancy is a physiological process required for normal fetal development. In contrast, excessive pregnancy-specific hypercholesterolemia increases the risk of complications, such as preeclampsia. However, the underlying mechanisms are unclear. Toll-like receptor 4 (TLR4) is a membrane receptor modulated by high cholesterol levels, leading to endothelial dysfunction; but whether excessive hypercholesterolemia in pregnancy activates TLR4 is not known. We hypothesized that a high cholesterol diet (HCD) during pregnancy increases TLR4 activity in uterine arteries, leading to uterine artery dysfunction. Sprague Dawley rats were fed a control diet (n=12) or HCD (n=12) during pregnancy (gestational day 6-20). Vascular function was assessed in main uterine arteries using wire myography (vasodilation to methacholine and vasoconstriction to phenylephrine; with and without inhibitors for mechanistic pathways) and pressure myography (biomechanical properties). Exposure to a HCD during pregnancy increased maternal blood pressure, induced proteinuria, and reduced the fetal-to-placental weight ratio for both sexes. Excessive hypercholesterolemia in pregnancy also impaired vasodilation to methacholine in uterine arteries, whereby at higher doses, methacholine caused vasoconstriction instead of vasodilation in only the HCD group, which was prevented by inhibition of TLR4 or prostaglandin H synthase 1. Endothelial nitric oxide synthase expression and nitric oxide levels were reduced in HCD compared with control dams. Vasoconstriction to phenylephrine and biomechanical properties were similar between groups. In summary, excessive hypercholesterolemia in pregnancy impairs uterine artery function, with TLR4 activation as a key mechanism. Thus, TLR4 may be a target for therapy development to prevent adverse perinatal outcomes in complicated pregnancies.


Assuntos
Hipercolesterolemia , Hiperlipidemias , Animais , Feminino , Masculino , Gravidez , Ratos , Hipercolesterolemia/metabolismo , Hiperlipidemias/metabolismo , Cloreto de Metacolina/metabolismo , Fenilefrina/farmacologia , Fenilefrina/metabolismo , Placenta , Ratos Sprague-Dawley , Receptor 4 Toll-Like/metabolismo , Artéria Uterina/metabolismo , Vasodilatação/fisiologia
2.
Basic Res Cardiol ; 119(1): 133-150, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38148348

RESUMO

Heart failure is a prevalent disease worldwide. While it is well accepted that heart failure involves changes in myocardial energetics, what alterations that occur in fatty acid oxidation and glucose oxidation in the failing heart remains controversial. The goal of the study are to define the energy metabolic profile in heart failure induced by obesity and hypertension in aged female mice, and to attempt to lessen the severity of heart failure by stimulating myocardial glucose oxidation. 13-Month-old C57BL/6 female mice were subjected to 10 weeks of a 60% high-fat diet (HFD) with 0.5 g/L of Nω-nitro-L-arginine methyl ester (L-NAME) administered via drinking water to induce obesity and hypertension. Isolated working hearts were perfused with radiolabeled energy substrates to directly measure rates of myocardial glucose oxidation and fatty acid oxidation. Additionally, a series of mice subjected to the obesity and hypertension protocol were treated with a pyruvate dehydrogenase kinase inhibitor (PDKi) to stimulate cardiac glucose oxidation. Aged female mice subjected to the obesity and hypertension protocol had increased body weight, glucose intolerance, elevated blood pressure, cardiac hypertrophy, systolic dysfunction, and decreased survival. While fatty acid oxidation rates were not altered in the failing hearts, insulin-stimulated glucose oxidation rates were markedly impaired. PDKi treatment increased cardiac glucose oxidation in heart failure mice, which was accompanied with improved systolic function and decreased cardiac hypertrophy. The primary energy metabolic change in heart failure induced by obesity and hypertension in aged female mice is a dramatic decrease in glucose oxidation. Stimulating glucose oxidation can lessen the severity of heart failure and exert overall functional benefits.


Assuntos
Insuficiência Cardíaca , Hipertensão , Feminino , Animais , Camundongos , Glucose/metabolismo , Camundongos Endogâmicos C57BL , Insuficiência Cardíaca/metabolismo , Miocárdio/metabolismo , Oxirredução , Cardiomegalia/metabolismo , Hipertensão/complicações , Obesidade/complicações , Ácidos Graxos/metabolismo , Metabolismo Energético
3.
Future Microbiol ; 18: 93-105, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36661071

RESUMO

Aims: Considering the need to identify new compounds with antifungal action, the activity of five 3-phenacylideneoxindoles compounds was evaluated. Materials & methods: The compounds were synthesized, and their antifungal activity was elucidated through minimum inhibitory concentration tests and interaction assay with other antifungals. Potential targets of compounds were predicted in silico. Results: 3-phenacylideneoxindoles compounds inhibited fungal growth with minimum inhibitory concentration and minimum fungicidal concentration ranging from 3.05 to 12.26 µM. The compounds demonstrated high selectivity index and presented a synergistic effect with itraconazole. In silico prediction revealed the pentafunctional AROM polypeptide, enolase, superoxide dismutase, catalase and kinases as proteins targets of the compound 4a. Conclusion: The results demonstrate that 3-phenacylideneoxindoles is a potential new class of antifungal compounds for paracoccidioidomycosis treatment.


Patients affected by paracoccidioidomycosis (PCM) require long-term treatment, which commonly influences their adherence. In addition, only three drugs are in clinical use, which indicates the relevance of research in identifying new drugs for treating PCM. Thus, five drugs were tested in the laboratory to verify whether they could prevent the growth of the fungus without being toxic to humans. In addition, whether these compounds in combination with drugs used to treat PCM could be even more potent was evaluated. All compounds tested efficiently inhibited the growth of Paracoccidioides, the fungus that causes PCM. One drug was identified that, combined with itraconazole, decreased the required dose of both the discovered compound and itraconazole needed to inhibit fungal growth. Using computational tools, this work suggests how the new drug could act against the fungus. The results demonstrate a potential new treatment option, but more studies are needed to confirm the safety of these drugs.


Assuntos
Antifúngicos , Oxindóis , Paracoccidioides , Paracoccidioidomicose , Antifúngicos/farmacologia , Antifúngicos/química , Itraconazol/farmacologia , Testes de Sensibilidade Microbiana , Oxindóis/química , Oxindóis/farmacologia , Paracoccidioides/metabolismo , Paracoccidioidomicose/tratamento farmacológico
4.
Int J Mol Sci ; 23(19)2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36232616

RESUMO

This study was designed to connect aortic stiffness to vascular contraction in young male and female Wistar rats. We hypothesized that female animals display reduced intrinsic media-layer stiffness, which associates with improved vascular function. Atomic force microscopy (AFM)-based nanoindentation analysis was used to derive stiffness (Young's modulus) in biaxially (i.e., longitudinal and circumferential) unloaded aortic rings. Reactivity studies compatible with uniaxial loading (i.e., circumferential) were used to assess vascular responses to a selective α1 adrenergic receptor agonist in the presence or absence of extracellular calcium. Elastin and collagen levels were indirectly evaluated with fluorescence microscopy and a picrosirius red staining kit, respectively. We report that male and female Wistar rats display similar AFM-derived aortic media-layer stiffness, even though female animals withstand higher aortic intima-media thickness-to-diameter ratio than males. Female animals also present reduced phenylephrine-induced aortic force development in concentration-response and time-force curves. Specifically, we observed impaired force displacement in both parts of the contraction curve (Aphasic and Atonic) in experiments conducted with and without extracellular calcium. Additionally, collagen levels were lower in female animals without significant elastin content and fragmentation changes. In summary, sex-related functional differences in isolated aortas appear to be related to dissimilarities in the dynamics of vascular reactivity and extracellular matrix composition rather than a direct response to a shift in intrinsic media-layer stiffness.


Assuntos
Elastina , Rigidez Vascular , Agonistas Adrenérgicos , Animais , Cálcio , Espessura Intima-Media Carotídea , Colágeno , Feminino , Masculino , Fenilefrina/farmacologia , Ratos , Ratos Wistar
5.
Biomolecules ; 12(8)2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-36009019

RESUMO

Aging impairs the expression of HSP70, an emergent player in vascular biology. However, it is unknown if age-related alterations in HSP70 are linked to a decline in arterial function. In this study, we test the hypothesis that the contributions of HSP70 to vascular contraction are diminished in middle-aged animals. We determined the basal levels of HSP70 in the aorta of young and middle-aged Sprague Dawley male rats using Western blotting. Functional studies were performed in a wire myograph system. Force development in response to phenylephrine was assessed in the presence or absence of extracellular calcium (Ca2+), and in aortic rings treated or non-treated with an HSP70 inhibitor. Fluorescent probes were used to evaluate vascular oxidative stress and nitric oxide levels. We report that middle-aged rats have significantly lower levels of HSP70. Blockade of HSP70 attenuated vascular phasic and tonic contraction in isolated aortas. It appears that a functional HSP70 is required for proper Ca2+ handling as inhibition of this protein led to reduced force-displacement in response to Ca2+ dynamics. Furthermore, middle-aged aortic rings exposed to the HSP70 inhibitor display higher reactive oxygen species levels without changes in nitric oxide. In summary, we show that middle-aged animals have lower levels of HSP70 in aortas, which associates with an age-related decline in vascular responses to α-1 adrenergic stimulation.


Assuntos
Aorta , Óxido Nítrico , Animais , Aorta/metabolismo , Proteínas de Choque Térmico HSP70 , Masculino , Óxido Nítrico/metabolismo , Fenilefrina/farmacologia , Ratos , Ratos Sprague-Dawley
7.
Peptides ; 147: 170697, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34801627

RESUMO

The apelin/apelin receptor (ApelinR) signal transduction pathway exerts essential biological roles, particularly in the cardiovascular system. Disturbances in the apelin/ApelinR axis are linked to vascular, heart, kidney, and metabolic disorders. Therefore, the apelinergic system has surfaced as a critical therapeutic strategy for cardiovascular diseases (including pulmonary arterial hypertension), kidney disease, insulin resistance, hyponatremia, preeclampsia, and erectile dysfunction. However, apelin peptides are susceptible to rapid degradation through endogenous peptidases, limiting their use as therapeutic tools and translational potential. These proteases include angiotensin converting enzyme 2, neutral endopeptidase, and kallikrein thereby linking the apelin pathway with other peptide systems. In this context, apelin analogs with enhanced proteolytic stability and synthetic ApelinR agonists emerged as promising pharmacological alternatives. In this review, we focus on discussing the putative roles of the apelin pathway in various physiological systems from function to dysfunction, and emphasizing the therapeutic potential of newly generated metabolically stable apelin analogs and non-peptide ApelinR agonists.


Assuntos
Receptores de Apelina/metabolismo , Apelina/metabolismo , Doenças Cardiovasculares/metabolismo , Nefropatias/metabolismo , Doenças Metabólicas/metabolismo , Animais , Apelina/análogos & derivados , Apelina/farmacologia , Receptores de Apelina/agonistas , Bradicinina/metabolismo , Sistema Cardiovascular/metabolismo , Feminino , Humanos , Pré-Eclâmpsia/metabolismo , Gravidez
9.
Sci Rep ; 11(1): 1420, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446873

RESUMO

Heat-shock protein 70 (HSP70) is a ubiquitously expressed molecular chaperone with various biological functions. Recently, we demonstrated that HSP70 is key for adequate vascular reactivity. However, the specific mechanisms targeted by HSP70 to assist in this process remain elusive. Since there is a wealth of evidence connecting HSP70 to calcium ([Formula: see text]), a master regulator of contraction, we designed this study to investigate whether blockade of HSP70 disrupts vascular contraction via impairment of [Formula: see text] handling mechanisms. We performed functional studies in aortas isolated from male Sprague Dawley rats in the presence or absence of exogenous [Formula: see text], and we determined the effects of VER155008, an inhibitor of HSP70, on [Formula: see text] handling as well as key mechanisms that regulate vascular contraction. Changes in the intracellular concentration of [Formula: see text] were measured with a biochemical assay kit. We report that blockade of HSP70 leads to [Formula: see text] mishandling in aorta stimulated with phenylephrine, decreasing both phasic and tonic contractions. Importantly, in [Formula: see text] free Krebs' solution, inhibition of HSP70 only reduced the [Formula: see text] of the phasic contraction if the protein was blocked before IP3r-mediated [Formula: see text] release, suggesting that HSP70 has a positive effect towards this receptor. Corroborating this statement, VER155008 did not potentiate an IP3r inhibitor's outcomes, even with partial blockade. In another set of experiments, the inhibition of HSP70 attenuated the amplitude of the tonic contraction independently of the moment VER155008 was added to the chamber (i.e., whether it was before or after IP3r-mediated phasic contraction). More compelling, following re-addition of [Formula: see text], VER155008 amplified the inhibitory effects of a voltage-dependent [Formula: see text] channel blocker, but not of a voltage-independent [Formula: see text] channel inhibitor, indicating that HSP70 has a positive impact on the latter. Lastly, the mechanism by which HSP70 modulates vascular contraction does not involve the [Formula: see text] sensitizer protein, Rho-kinase, nor the SERCA pump, as blockade of these proteins in the presence of VER155008 almost abolished contraction. In summary, our findings shed light on the processes targeted by HSP70 during vascular contraction and open research avenues for potential new mechanisms in vascular diseases.


Assuntos
Aorta/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Vasoconstrição , Animais , Masculino , Ratos , Ratos Sprague-Dawley
10.
Front Microbiol ; 11: 575045, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042088

RESUMO

Downy mildew, caused by Plasmopara viticola, is the main disease affecting vineyards in subtropical Brazil. Here, we collected 94 P. viticola isolates from four organic and conventional vineyards in the two main grape-growing states of Brazil to evaluate the sensitivity to the quinone outside inhibitor (QoI) azoxystrobin by pheno- and genotyping assays. The impact of location, production system and sensitivity to QoI fungicides on the population genetics and structure of P. viticola was determined using 10 microsatellite markers. Cytochrome b sequencing revealed that 28 and 100% of the isolates from vineyards under organic and conventional management carried the G143A mutation, respectively. The G143A mutation was associated with high levels of azoxystrobin resistance. Three out of the 94 isolates analyzed carried the M125I alteration, not previously described in P. viticola, which was associated with a five-fold reduction in azoxystrobin sensitivity compared to wild-type isolates. Haplotype network analysis based on cytochrome b gene sequences suggested that the Brazilian populations are more closely related to the European than the North American population. A total of six haplotypes were identified, with two of them carrying the G143A mutation. Microsatellite analysis revealed high allelic and genotypic variation among the four populations. Population differentiation analyses indicated that state of origin directly influences the population biology of P. viticola, while production system and QoI sensitivity have little effect. Great genetic diversity, sexual reproduction and high levels of admixture were observed in Rio Grande do Sul State. In contrast, populations in São Paulo State were dominated by a few clonal genotypes, and no admixed genotype was detected between the two genetic pools identified in the state. This study raises the hypothesis that winter weather conditions influence the overwinter survival strategy with profound effects in the population biology of P. viticola.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...